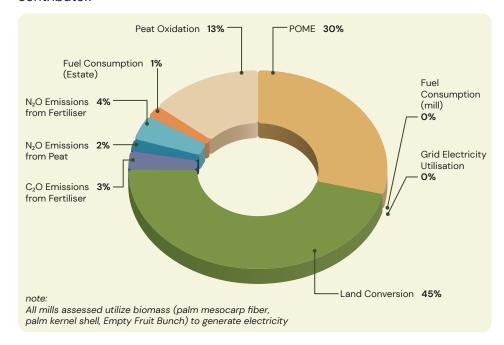


NET ZERO PATHWAY FOR THE PALM OIL SECTOR


The palm oil sector has often been associated to deforestation, peatland degradation, and significant greenhouse gas (GHG) emissions. However, with growing sustainability commitments, such as those driven by the RSPO, The sector now stands at a pivotal moment to redefine its role as part of the climate solution. With the adoption of sustainable production practices, conservation of High Conservation Value (HCV) and High Carbon Stock (HCS) areas, ecosystem restoration, improving waste management, and strong circular energy potential, palm oil has the potential to transform from a major emission source into a net carbon sink.

Key Contributors to Emissions in Palm Oil Production

GHG emissions from palm oil production are largely driven by land use changes and processing activities. Recent scientific assessments highlight both the challenges and potential. A 2025 life-cycle study of Indonesian refined palm oil found producing one ton of oil emits in approximately 2.2 tons CO2-equivalent emissions, over half of these emissions stem from wastewater treatment, while around one-third are linked to land use changes, particularly deforestation and peatland conversion.

Similarly, Our study on mutliple mills and plantations in Indonesia revealed that land conversion was responsible for nearly half of total emissions, making it the primary contributor.

This reflects the carbon released when high-carbon landscapes are cleared for plantation development. Such emissions are typically immediate substantial, highlighting the critical importance in preventing further deforestation and protecting High Carbon Stock (HCS) and High Conservation Value (HCV) areas. Smaller but notable sources include N₂O emissions from fertilizer use (4%) and fuel consumption in estates and mills (about 2%), representing operational emissions that can be mitigated through efficiency and optimized fertilizer management. These mills use small amount of fossil fuels by optimizing the usage of biomass.

Regenerative Agriculture

Responsible Sourcing

of any credible net zero

peat conversion.

committed to sustainability policy

Deforestation monitoring for all

Insetting Emissions

Scope 3 reductions.
Such insetting creates

linking sustainability

land stewardship.

performance directly to

Insetting emissions in HCV and HCS areas measurable, verifiable, and aligned with

internal carbon value chains,

suppliers

Avoidance is the foundation

No new deforestation or

100% traceability and

Practices

pathway

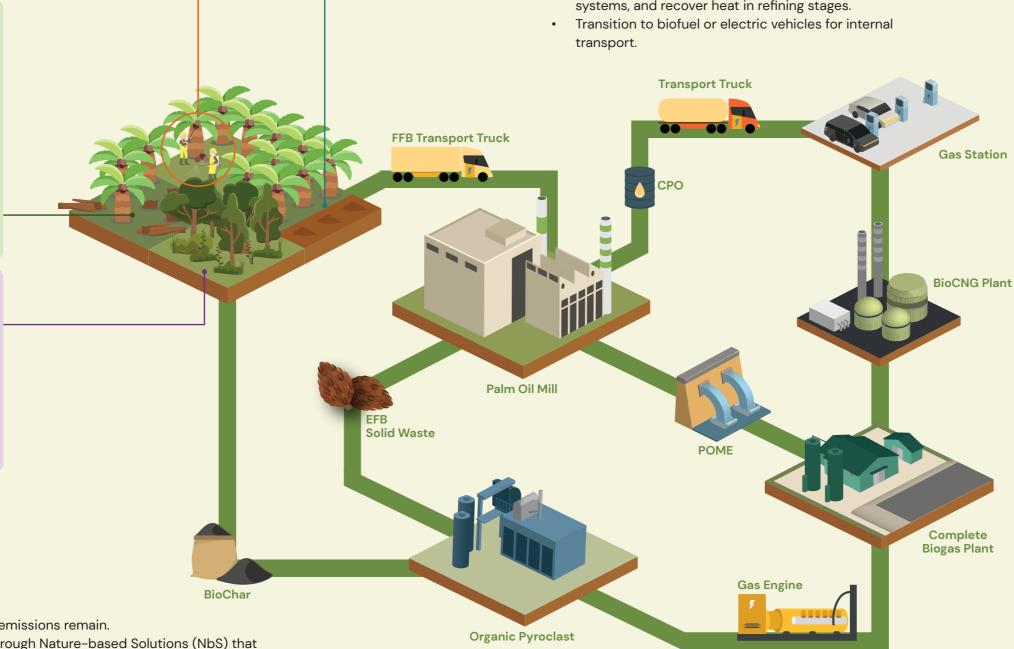
- Composting: Composting organic waste helps reduce reliance on chemical fertilizers, enhances soil health and lowers greenhouse gas emissions.
- Water Table Management (on Peatlands): Maintaining peat water levels close to the surface (40–60 cm) prevents excessive oxidation and CO₂ release.
- Smallholder Regeneration and Land Rehabilitation: Supporting smallholders in replanting old, low-yield palms on existing land increases carbon efficiency (emission per ton of oil) while avoiding expansion.
- Integrated Pest and Pollinator Management (IPPM): Reducing chemical pesticide use and promoting biological controls lowers fossil-fuel-based agrochemical emissions and enhances ecosystem resilience.

Land Use Optimization

- Prioritize yield improvement over expansion; every 1% increase in yield can reduce emissions intensity by 1–1.5% reducing pressure to expand new land.
- Minimize unplanted areas as palm oil itself can sequester carbon 8-10 tCO2 per Ha
- Adopt precision fertilization and integrated soil management

Technology Based Solutions

Replace open lagoons with covered biogas systems.


This can redure mill emissions by up to 70%, and generate renewable energy. This single intervention transforms a waste stream into a clean energy source.

Palm residues and effluents can be reused as renewable resources:

- Bio-CNG generation: Captured biogas can be upgraded into bio-compressed natural gas for mill operations, fleet fuel, or grid injection.
- Biomass utilization: Empty fruit bunches, mesocarp fibre, and palm kernel shells can produce heat and power, creating energy self-sufficient mills.

Processing Efficiency:

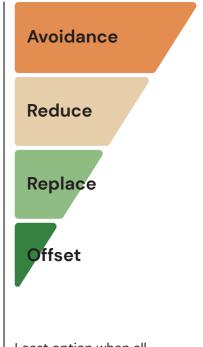
 Improve boiler and combined heat and power (CHP) systems, and recover heat in refining stages.

Even with full mitigation, some emissions remain.

Residuals can be neutralized through Nature-based Solutions (NbS) that enhance ecosystem carbon stocks and community resilience:

- Reforestation and riparian restoration within company boundaries.
- Peatland rehabilitation to prevent long-term CO₂ and CH₄ release.

waste management, not from the crop itself. Addressing these emission hotspots through a structured Avoid–Reduce–Reuse–Offset strategy can transform the palm oil industry into a net zero catalyst. With targeted interventions such


With targeted interventions such as avoiding deforestation through responsible sourcing, capturing and utilizing methane, restoring peatlands, and supporting regenerative smallholder practices the palm oil sector has a credible pathway to significantly reduce emissions and move toward net-zero and even net-sink outcomes

Altogether, these emission

sources demonstrate that the

footprint stems from land use and

majority of palm oil's carbon

Least option when all mitigation efforts

• have been made

illustrated by Daemeter

Daemeter is a leading independent consulting firm promoting sustainable development through responsible and equitable management of natural resources,

particularly in Asia's emerging economies. Based in Indonesia, we are a team of 40 in-house senior advisors, project managers, analysts, technical experts and field officers, representing decades of experience. With a diverse, multinational staff, Daemeter applies international standards, while understanding and respecting national context, local stakeholders and socio-political operating conditions.

We bring our expertise together through 5 Knowledge Areas

Sustainable Supply Chain

Social, Smallholders, and Livelihoods

Biodiversity, Conservation, and Restoration

Forest, Nature, Climate

Geospatial and Informatics

Other Practice Areas

- HCV & HCS Assessments Social
- Impacts, Labour & Human Rights
- Landscape Initiatives
- Monitoring & Evaluation
- ESG Due Diligence
- Capacity Building & Facilitation
- Policy Analysis

Forest, Nature, Climate

Leveraging climate finance and NBS to maximize the role of forests and communities in combatting climate change

FNC Services

Nature based solutions project

- Project feasibility study
- Project design and validation support
- Project monitoring and verification technical support
- Monitoring, Reporting & Verification (MRV)

Methodology Development

- Climate policy
- Sustainable low-carbon approaches
- REDD+
- Mitigation plan
- Climate adaptation resilience

Climate Sustainability Solutions

- Restoration and conservation strategies
- Safeguard, rating, and framework alignment
- · Sourcing high-quality carbon project
- GHG inventory
- Carbon footprint
- Decarbonization
- Net zero strategy
- SBTi

